Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action
نویسندگان
چکیده
Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.
منابع مشابه
Intravenous anesthetic propofol inhibits multiple human cardiac potassium channels.
BACKGROUND Propofol is widely used clinically for the induction and maintenance of anesthesia. Clinical case reports have shown that propofol has an antiatrial tachycardia/fibrillation effect; however, the related ionic mechanisms are not fully understood. The current study investigates the effects of propofol on human cardiac potassium channels. METHODS The whole cell patch voltage clamp tec...
متن کاملImproving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology.
BACKGROUND The current proarrhythmia safety testing paradigm, although highly efficient in preventing new torsadogenic drugs from entering the market, has important limitations that can restrict the development and use of valuable new therapeutics. The CiPA (Comprehensive in vitro Proarrhythmia Assay) proposes to overcome these limitations by evaluating drug effects on multiple cardiac ion chan...
متن کاملThe Susceptibilities of Human Ether-à-Go-Go-Related Gene Channel with the G487R Mutation to Arrhythmogenic Factors.
The human ether-à-go-go-related gene (hERG) channel mediates the rapid delayed rectifier potassium current (IKr) responsible for shaping the repolarization phase of cardiac action potentials. hERG mutation may cause hERG channel malfunction, leading to long QT syndrome and other arrhythmic disorders. Elucidation of the genotype-phenotype relationships of individual hERG mutations is key to the ...
متن کاملIntracellular potassium stabilizes human ether-à-go-go-related gene channels for export from endoplasmic reticulum.
Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG traffick...
متن کاملHigh-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872.
Human ether-a-go-go-related gene (HERG) potassium channels are one primary target for the pharmacological treatment of cardiac arrhythmias by class III antiarrhythmic drugs. These drugs are characterized by high antiarrhythmic efficacy, but they can also initiate life-threatening "torsade de pointes" tachyarrhythmias. Recently, it has been suggested that combining potassium and calcium channel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015